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Abstract 

The augmented ARTl neural network was introduced in a companion paper. The dynamics of the AART1-NN 
are described by a set of nonlinear differential equations that facilitate the real time implementation of the ARTl 
neural network. In this paper we show that under certain parameter constraints the AARTl model behaves in 
the same manner as the ARTl model. 

1 Introduction 
The augmented ARTl neural network (AART1-NN) was introduced in a companion paper ([l]). The 
AART1-NN is described by a set of nonlinear differential equations that are extensions to  those devel- 
oped by Carpenter and Grossberg in [2], where the ARTl neural network (ART1-NN) was introduced. 
The importance of the AART1-NN is that it facilitates the real time implementation of the ART1-NN. 
The term real time is used in its strictest sense. That is, in the AARTl model we have removed all 
algorithmic components from an implementation of the ARTl model. This feature of the AART1-NN 
offers the inherent advantage of flexible network implementation and it also allows the network to 
function in either the slow or the fast learning case. Algorithmic implementations of ARTl do not 
exhibit these capabilities. The dynamics of the AART1-NN are completely determined by a set of 
differential equations that comprise the entire model. The behavior of the differential equations that 
define the AART1-NN depends on a number of parameters. In this paper we show that under certain 
constraints on these parameters the operation of the AART1-NN is identical with the operation of the 
ART1-NN. Since the AARTl model is an extension of the ARTl model, this work proves the inherent 
capability of the ART1-NN to operate in a totally unsupervised manner. 

2 Preliminaries 
In the following sections we introduce useful notation, and we briefly summarize the AART1-NN 
equations. 

2.1 N o t a t i o n  

The architecture of the AART1-NN and its major components is presented in Figure 1. For notation 
purposes we need to know that the AARTl model consists of two fields of nodes denoted F1 and F2. 
We denote nodes in the F1 field by v, and nodes in the first layer of the F2 field by v3. The index 
of the nodes in the F1 field ranges from 1 to M ,  while the index of the nodes in the first layer of 
the F2 field ranges from M + 1 to N .  For every node vj in the first layer of the F2 field there is a 
corresponding inhibitory node 6, that resides in the second layer of the F2 field. The index of the 
inhibitory nodes in the F2 field ranges from A4 + 1 to N .  We denote the activity of node v, in the 
F1 field by z,, the activity of a node vJ in the F2 field by z3 and the activity of an inhibitory node 
GJ in the F2 field by 2,.  We also denote by zt3 the value of the bottom up LTM trace associated with 
an arc connecting node v, in the F1 field with node v j  in the F2 field. We finally denote by zJ1 the 
value of the top down LTM trace associated with an arc connecting node uj in the F2 field with node 
v, in the F1 field. The reset mechanism in the AARTl model is initiated by the reset node U, whose 
activity is denoted by z r .  Let us also introduce the following vectors. 
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I =  ( 1 1 , . . . 7 1 M )  

x = ( 2 1 ,  ..., ZM) 
s = ( f l ( z 1 ) 7 . . . , f l ( Z h f ) )  

T = (TM+l,...,TN) = ( D i C z i  ,Mtlfi(~i),...,D~Czir~fi(zi)) 

y = (ZM+l, .  . . , Z N )  

U = ( f Z ( Z M + l ) ,  . . . , f Z ( Z N ) )  

a t 

v = (K,  . . . , V M )  = ( 0 1  C Z j l f Z ( Z j 1 ,  . . . , D 1  Z j M f d Z j ) )  
3 j 

I corresponds to  the input pattern at  the F1 field. Its components are referred to as the bottom up 
inputs at the F1 field. X is the STM activity across the F1 field. S is the output pattern across the 
F1 field. T is the bottom up input from the F1 field that affects the first layer of the F2 field. Y is 
the STM activity across the first layer of the F2 field. U is the output pattern across the first layer of 
the F2 field. V is the top down input from the first layer of the F2 field that affects the F1 field. Its 
components are referred to as the top down inputs at  the F1 field. 

A node with activity below or above the quenching threshold is denoted as subliminally or supml- 
iminally active, respectively. The quenching threshold is a small positive constant. We say that a 
node in the network is activated if its activity increases from a level below the quenching threshold 
to  a level above the quenching threshold. We also say that a node in the network is deactivated if its 
activity drops from a level above the quenching threshold to  a level below the quenching threshold. 

A contrast enhancement or competition cycle is the process that the first layer of the F2 field goes 
through to  choose one node that will accurately represent the input pattern I presented across the F1 
field. In this paper, the only case considered is the one where only one node in the first layer of the 
F2 field is chosen to represent the input pattern I. If after the activation of a node in the first layer 
of the F2 field no reset occurs we say that this node codes the input pattern I. 

2.2 

In the following, we present the differential equations that define the AARTl model. These equations 
are also presented in more detail in [l] where the AARTl model is introduced. The activity of a node 
'U; in the F1 field satisfies the following differential equation: 

The AARTl Neural Network Equations 

where, 

The activity of the reset node 'U, satisfies the following differential equation: 
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where U is the unit step function (V(z) = 0 for x 5 0 and V(z) = 1 for 2 > 0). The activity of an 
inhibitory node i j j  in the F2 field satisfies the following differential equation: 

(6) 
d 

~2-5j  dt = -[I - g(I)lij + dI)fr(2r)f2(zJ) 

where 

M 

i=l 
1, if Ii # 0; 

0, otherwise. 
= 

1, if z, > 6,; 
fr(xr) = 0, otherwise. 

(7)  

The activity of a node v j  in the F2 field satisfies the following differential equation: 

(9) 
d 

~ 2 - x j  dt = - ~ j  + (1 - Azxj)JT - (B2 + C2zj)JJ: 

where 

The value of the bottom-up LTM trace, zij, is determined by the following differential equation: 

The value of the top down LTM trace, zji, is determined by the following differential equation: 

3 Operation of the AARTl Neural Network 
The behavior of the differential equations that define the AARTl model (see Section 2) depends 
on a number of parameters that  are Listed in Table 1. In this section we show that there exists 
a set of parameter values for which the AART1-NN operates like the ART1-NN. The approach to 
accomplish this task is as follows: We state three postulates (1,2,3). The satisfaction of these postulates 
guarantees the successful operation of the AART1-NN (i.e., an operation identical with the ART1- 
NN operation). The postulates are valid under certain parameter constraints, and as a result, these 
parameter constraints guarantee the successful operation of the AART1-NN. 

It is worth noting that during the operation of the AART1-NN we make the assumption that the 
zero pattern is briefly presented at the F1 field in between any two successive nonzero input pattern 
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I I1 Parameters I 
F1 field 
F2 field 

Reset System 
LTM traces 

Ai B1 C1 D1 €1 61 

A, Er 6, P 
A2 B2 C2 0 2  €2  62 62 

K L E ,  

Table 1: List of parameter values in the AART1-NN model 

presentations to the network, This allows all the node activities in the AART1-NN to return to 
their resting value of zero prior t o  any nonzero pattern presentation at  the F1 field of the network. 
Furthermore, it disengages the enduring inhibition of the nodes in the first layer of the F2 field that 
have been reset during a nonzero pattern presentation, and it allows the F2 field of the AART1-NN 
to code the next nonzero input pattern without bias. 

Let us now consider the presentation of a nonzero input pattern I at the F1 field of the AART1- 
NN. Let us also denote by, OMM+~, 0 M + 2 ,  . . . ,  ON-^, O N ,  the bottom-up inputs that affect the nodes 
VM+1, V M + ~ ,  . . . , V N - ~ ,  respectively, when the output activity a t  the F1 field is equal to I. The 
following postulates guarantee the successful operation of the AART1-NN during the presentation of 
pattern I at the F1 field of the AART1-NN. 

Postulate 1: 
The reset node is activated only i f  there is a mismatch between bottom up and top-down inputs. The 
reset node is subliminally active f o r  the time interval during which an active node in the first layer of 
the F2 field is tested for its appropriateness to represent the input pattern I (i.e., from the time that 
this node becomes active until the output activity at the F1 layer changes from I to I n  V ,  where V 
stands for the top-down input emanating from this node). 

Postulate 2: 
After a reset event the output activity at the F1 field returns to I long before another node (i.e., dif- 
ferent than the ones that have already been reset) in the first layer of the F2 field becomes active. This 
postulate guarantees that competition in the first layer of the F2 field occurs, primarily, during the 
time intervals at which the output activity at  the F1 layer is equal to  I. 

Postulate 3: 
During the presentation of the nonzero pattern I at the F1 field of the AART1-NN the nodes in the first 
layer of the F2 field are going to be activated, if necessary, with the following order VM+1, 2)M+2, . . . , 
UN-1 .  Some nodes may not even get the chance t o  be activated in the case that a previously activated 
node is found t o  be the appropriate one to  represent the input pattern I. 

Postulates 1,2,3 are valid under constraints CON1-CON24 that are listed below. In constraints 
CON1-CON24, O,, corresponds to an upper bound on the Oj's for any input pattern presented at 
the F1 field of the AART1-NN, is a lower bound on the 0 3 ' s  for any input pattern presented at 
the F1 field of the AART1-NN, zi j (0)  and z j i ( 0 )  are the bottom up and top down traces, respectively, 
prior to the presentation of the first input pattern at  the F1 field of the AART1-NN. 

CON1: 
CON2: Q , C ~ , E ~  << E ,  

CON3: 
CON4: 
CON5: O < p < l  

The Oj's j = M + 1,. . . , N are distinct. 

Ai > 0, Ci > 0, A2 > 0, C2 > 0 
Bi > 0, D1 > 0,  E2 > 0 ,  Dz > 0 

L CON6: 
CON?': < ~ j i ( 0 )  5 1 

L. > 1, 0 < zij(0) < L-I+M 
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CON8: 

CONQ: 
CON10: B2 > Om, 
CON11: 
CON12: 
CON13: 
CON14: 

max{l,Dl} - & ( I +  A1 + Ci) < Bi < 1 + Di - & ( I +  Ai + DiAi  + ci) 
6, > l-[ l-&(l+Al)]& 

A, 

B2 > 1 + Om, 
61 = 0.01, A1 = 1.0, €2 = 0.01 
D1 = 1, B1 = 0.5, C1 = 100 
AZO,, < Ai,  €1 = 0.162 

62 = 0.01, A2 = 0.3 
CON15: B2 =   YO;^,, C2 = (yomax with a > 0 

CON17: B2 = PO:, C2 = PO, where p 2 5(1+A1+D1A1+C1)'2, 0, = max (O,,, 1) 
CON18: 1 +Azoma, << C2 
CON19: 62 << B2Cp' 
CON20: A, = 2, 6, = 0.02, = 61 

CON21: 
CON22: & > 6 ,  
CON23: l+iyzm,n > 62  

CON24: & >6 ,  

CON16: 

€1 - - 2- > (1 - 0.99792) . Az for 31 = M + 2 , .  . . , N - 1 and j z  > j ,  
0 3 1  

CON1 is required for the successful operation of the ART1-NN (see [2]), and as a result, for 
the successful operation of the AART1-NN. CON2 implies that the LTM traces in the AART1-NN 
change very slowly compared to  the activities of the nodes in the network. CON3 guarantees that the 
activity 2, will be constrained in the interval [-B1C;',A;'] and the activity x3 will be constrained 
in the interval [-BzC;',A;l]. CON4 and the fact that the .zt3's, .z3,'s are nonegative makes sure that 
J:, J;' are indeed excitatory signals and that J;, J,- are indeed inhibitory signals. CON5 is required 
for the successful operation of the reset mechanism described in detail in [2]. CON6 is required for 
the satisfaction of the direct access inequality (see [2]), while CON7 and CON8 are necessary for the 
validity of the 2 rule (see [2]). CON9-CON21 are introduced to  guarantee the validity of Postulates 
1,2,3. CON22-6ON24 impose a lower bound on the forcing terms for the differential equations that 
describe node activities in the AART1-NN. If these lower bounds are not imposed the activities of 
the nodes in the AART1-NN would never exceed their quenching thresholds. The proof that, under 
constraints CON1-CON24, Postulates 1,2,3 are valid is carried out in every detail in [3]; it is ommitted 
here due to lack of space. 

It is worth noting that under constraints CON1-CON24 when one node becomes supraliminally 
active in the first layer of the F2 field the activities of the other nodes are rapidly driven to their 
extreme negative values independently of the bottom up inputs that they receive from the F1 field. 
It is also worth noting that the activity of a node in the F1 field that receives bottom up and strong 
top down input reaches a limiting value that is above the quenching threshold but very close to the 
quenching threshold. Finally, the activity of a node in the F1 field that receives bottom up input and 
weak top down input reaches a limiting value that is below the quenching threshold but very close to 
the quenching threshold. 

4 Conclusions 

In this work we provided a summary of results from a detailed analysis of the differential equations 
that define the AART1-NN model. The analysis of the differential equations that define the AART1- 
NN model (for more details see [3]) demonstrated how the AART1-NN parameters can be chosen (see 
Section 3) in order to guarantee that the AARTl model behaves in the same manner as the ART1 
model. The AART1-NN is useful because it facilitates the real time implementation of the ART1-NN. 

It should be emphasized that the validity of Postulates 1,2,3, under constraints CON1-CON24, is 
independent of whether the AART1-NN operates in a slow learning environment or a fast learning 
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environment. As a result, under constraints CON1-CON24, the AART1-NN operates like the ART1- 
N N  in either the fast or the slow learning cases. In a fast learning environment the input pattern is 
presented long enough for the bottom up and top down traces to reach their limiting values. A slow 
learning environment corresponds to  the case where the input pattern is presented long enough for the 
the network t o  choose the right node in the first layer of the F2 field, that  will code the input pattern, 
but not necessarily long enough for the bottom up and top down traces to reach their limiting values. 

The set of constraints (CONl-CON24), derived in Section 3, that  guarantee the successful operation 
of the AART1-NN is not the only set for which the AART1-NN behaves in a desirable way (i.e., like the 
ART1-NN). It is though a set of constraints for which we could prove analytically that the AART1-NN 
exhibits the desirable behavior. If another set of constraints were to be constructed they had to be 
such that Postulates 1,2,3 are true. Hence, the formulation of Postulates 1,2,3, in Section 3, provides 
the right framework in an effort to find constraints on the AART1-NN parameter values that will 
guarantee its successful operation. 
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Figure 1: The architecture of the AART1-NN model 
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